
© 2018 Sage Design Automation, Inc.

DRVerify:

The Verification of Physical Verification

Sage Design Automation, Inc.

Santa Clara, California, USA

Who checks the checker?

DRC (design rule check) is the most fundamental physical verification signoff check between design and fabrication. Passing DRC ensures

a physical design can be fabricated successfully and it is required for any type and style of design regardless of application, function,

performance, etc. A DRC check is the process where a DRC tool reads the physical design data and runs a DRC runset on it. The DRC

runset (or "DRC deck") is a set of instructions that scan and process physical design shapes with the purpose of detecting violations of

design rules for a specific fabrication technology. These runset instructions are written in a DRC tool-specific language, each with its own

proprietary instruction set , syntax and semantics. The DRC tools, such as Calibre (Mentor), ICV (Synopsys) and PVS (Cadence), are

mature and stable software products. but a particular design rule check is only as good as the runset code, regardless of the quality and

maturity of the DRC tool. DRC tools will successfully execute any syntactically correct runset, but provide no indication of the extent to

which this runset represents the actual design rule intent, which reflects the actual manufacturing process limitations and tolerances.

As explained below, the DRC runset is the weakest link in the physical verification chain and as such requires its own rigorous

verification. Undetected DRC violations may result in low yield or even non-functioning devices, therefore verifying the runset is of the

utmost importance.

DRC runsets are error prone

The reality is that any software program is inherently error prone. The general rule-of-thumb bug rate varies between 3 and 10 bugs per

1000 lines of code. Considering that modern process technologies have thousands of rules that are implemented in tens of thousands

lines of code, the presence of a significant number of errors is inevitable.

There are two additional factors that cause DRC runsets to be even more error prone and volatile than general software programs.

A. The original design rule definitions that describe rule intent are written by process integration and design rule manual teams. They are

usually written in plain language and not in a formal manner, and are often ambiguous and not complete. The DRC runset coders must

interpret these descriptions, often resulting in a runset that is subject to the coder's subjective interpretation of the rules.

B. The original design rule intent may change during process development, ramp-up and deployment. Design rules are therefore

dynamic, and are frequently modified and updated as the technology develops and matures. The DRC runset has to follow and reflect

these changes which causes additional spec and code instability.

Creating a correct and accurate set of rule checks for a new technology is close to impossible, and the runset gets revised and corrected

many times before it can be completely committed and used in production.

To lower the risk and release higher quality runsets, PDK (Process Design Kit) teams at the foundry create QA test cases for each design

rule. These test cases are a collection of layout snippets that manifest both violating (failing) and legal (passing) layout configurations.

© 2018 Sage Design Automation, Inc.

The DRC code under test is then run on these layout test cases; it is expected to flag an error in each of the "failing" test cases, but in

none of the "passing" cases. Any deviation indicates a potential problem with the DRC check code which needs to be investigated and

possibly corrected.

Current industry practices for QA test cases

In broad terms, there are three types of solutions currently in use by the industry: A. Manual layout of test cases. B. Custom made

programs and scripts that manipulate layouts (usually developed in-house). C. Commercial EDA tools.

A. The manual approach: Engineers usually have good intuition for creating meaningful test cases but may lack the ability to

systematically cover every possible combination of a large number of variables and conditions present in complex design rules. With

new and complex design rules it is also easy to make mistakes between passing and failing borderline conditions, and thus it is unlikely

to get it all correct. Worst of all, the manual solution is slow, labor intensive and hard to maintain or scale up for a large number of rules.

B. Scripts and automated layout tools: Faster than manual layout, but not comprehensive and systematic and are once again driven by

the user's rule interpretation and scope of imagination of what tests to create or what can go wrong. These tools are in fact a

mechanized version of the manual intuitive method, and as such they are neither systematic (covering all possible cases) nor necessarily

correct in the interpretation of the design rule description. In addition, they can create redundant test cases that do not expose any new

type of error, and yet take up more resources and time to manage and check.

C. Commercial tools: Tools such as STEP (System for TEsting PDKs) from Cadence. Tools of this type rely on simple and known design

rule types with parameterized layer numbers and distance values. For each rule type, e.g. a single layer spacing rule, there is a pre-

drawn fixed test layout template that has been developed to cover the already known corner cases for that specific rule type. This may

work for known and longtime established design rules and mature technologies. However, given their static nature, they are not a

solution for new technologies with new types of rules. They also have other limitations - as will be explained in the following sections.

One general observation about all the above methods: They all share a fundamental flaw - The lack of a formal rule definition to verify

the DRC code against.

Requirements for a reliable and effective runset verification flow

1. A trusted design rule specification as reference

To verify the correctness of a DRC implementation, it is necessary to have a golden reference to check against. In general, a trusted

reference is the cornerstone for any verification method. With simple design rules, the distinction between keeping and violating a rule

may be obvious, but even modestly complex design rules are not intuitive and are frequently described ambiguously. In such cases, a

clear, complete and formal reference spec is absolutely required.

2. Automatic PASS/FAIL determination

Distinguishing between pass and fail for each generated test instance should be automatic and entirely based on the golden rule spec,

thus eliminating any subjective interpretation, bias or risk for errors.

© 2018 Sage Design Automation, Inc.

3. Test generation independent from the DRC check implementation

 It is crucial that test suite creation is not influenced by the DRC check implementation, otherwise the implementation is being checked

“against itself”. If test cases are coded manually, they should be made by separate teams. If they are generated automatically, they

cannot use the DRC check code as "the source" for test case generation.

4. Support any design rule and any rule changes

An effective system needs to handle all rule types, any new design rule and any design rule updates. Some methods rely on "known

rules" and have pre-made templates for them, which include a specific set of test cases. These test cases encapsulate a specific acquired

knowledge about these types of rules and their potential violations. As long as a design rule exactly matches the existing template it

works well, but a new type of design rule requires a new template with other pass/fail cases that represent all possible corner cases.

Furthermore, some new rules that may be assumed to fit existing templates, can actually differ in hard-to-notice, nuanced details. The

ultimate system should handle any design rule type and reflect all details and nuances with complete accuracy.

 5. Track rule changes and updates

This is related to the previous requirement. The system needs to be flexible and dynamic, and automatically respond to any

modification in design rule specification. This means that any change to the design rule spec will be reflected and automatically updated

in the test cases created.

6. Coverage unconstrained by subjective bias or preconceptions

The system needs to generate all possible use and misuse cases of the rule to ensure the DRC check code covers every such instance. It is

difficult and sometimes impossible to envision all possible rule violations or border-line rule uses. If the choice of what test cases to

create is made manually, it is limited by the engineers’ imagination and specific experience, and may not include some seemingly

“weird” and unexpected abuses of the rule. Experience shows that any holes or gaps left untested, will be eventually discovered by

designers, and if the test cases didn't include them, they will escape the DRC check.

7. Test cases need to be design rule correct for all rules other than the rule under test (RUT)

The QA test generation method should be aware of all design rules and be able to enforce them, since often a DRC check for one rule is

influenced by previous checks in the runset. For example the existence of another unintended rule violation may cause the runset code

to branch out of a check for the current RUT. Therefore test cases that violate multiple rules, might be ineffective for detecting specific

runset errors. . An effective system need to be aware of all rules and create design rule correct tests, where only the RUT is intentionally

violated only where needed.

8. Rules in design context

 The system should also verify checks within specific design context or structures such as devices and voltage domains. Checks can be

context dependent and are relevant only for specific design configuration. For example, NMOS transistors can have device specific

design rules that are relevant only within the device, and may also vary for different voltages. The test cases for such rules need to

include enough context, e.g. complete devices and voltage domain identifiers and the system should know how to manipulate them

such that only the RUT is violated where needed, while conforming to all the other rules .

© 2018 Sage Design Automation, Inc.

DRVerify

DRVerify is a commercial tool that was architected and developed based on the above requirements. It is part of the iDRM system for

development and management of design rules. The system can import design rules from design rule manuals (DRMs) with customizable

formats) and also enables entering rules using its graphical user interface. DRVerify generates FAIL/PASS test sets for each design rule.

The tool also provides coverage measures as well as final runset verification analysis pointing to possible mismatches if such are found.

Fig1. Design rule QA “in context” of device layout. Only one rule can pass/fail, all other rules kept DRC-correct

Fig2. DRVerify data flow: from Design Rule Manual (DRM) to verified DRC runset

© 2018 Sage Design Automation, Inc.

Comparison Table

The following table compares between DRVerify and other methods and practices for DRC runset QA

 Methods / Tools
Metrics

DRVerify

Manual Layout

Script based

Other commercial
tools

Trusted rule spec and reference

YES. iDRM formal rule specification
and internal reference DRC engine

NO. Relies on
informal DRM

NO. Relies on
informal DRM

NO. Relies on a rule
template

PASS/FAIL determination
Includes DRC engine that is 100%
driven by the specification

Human
interpretation

Human
interpretation

Relies on the rule
template

Flexibility: support any design rule YES. Completely flexible
Yes but not
practical

Can take long
time, error prone

NO. Only existing
templates

Automatic updates
YES. Auto-synched with rule
definition NO

Not for new
types of rules

Not if outside of
template

Unlimited by subjective
preconceptions

YES. Tests are derived
automatically from the rule spec

NO. driven by
human concept

NO. driven by
human concept NO if no template

Tests are DRC correct (except RUT
FAIL cases) YES: has rule enforcement engine Very laborious NO. Too difficult Not necessarily

Tests for rules in context
(e.g. devices)

YES. Uses device layout as seeds
for creating device tests

Very laborious,
impractical NO. Too difficult

NO. Only simple rule
templates

Time and effort Automated; fast Not practical
Significant effort
per each rule

Good only for
existing templates

Cost of change & maintenance Very low Huge
Can be
significant

Very high if outside
of template

Coverage Very high Limited Limited
No coverage outside
of template

Coverage measure YES NO NO NO

